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Abstract

To appreciate the potential applications of stem cell technology in 
neurodegenerative diseases, including Parkinson’s disease (PD), it is important to 
understand the characteristics of the various types of stem cells. These stem cells include 
mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), embryonic stem (ES) 
cells, progenitor cells, and induced pluripotent stem cells (iPS). Among them, MSCs have 
several advantages over other counterparts. They are easily accessible and can be 
obtained from various tissues such as bone marrow, dental pulp, adipose tissue, amnion, 
placenta, umbilical cord and cord blood with avoiding ethical problems. Therefore, 
MSCs is attractive clinically because there are no related ethical and immunological 
concerns. Functional dopamine (DA) neurons can be efficiently induced from MSCs. 
Several studies, including our studies, have shown that MSCs can protect and/or 
stimulate regeneration in host-damaged DA neurons mainly through secretion of trophic 
factors and cytokines from MSCs. These results demonstrate the potential of MSCs 
derived from an autologous source for clinical applications for PD, although further 
studies are required. This review is focused on the potential of MSCs as a therapeutic 
cell source for PD.

ABBREVIATIONS
PD: Parkinson’s Disease; MSCs: Mesenchymal Stem Cells; 

HSCs: Hematopoietic Stem Cells; ES: Embryonic Stem; iPS: 
Induced Pluripotent STem cells; DA: Dopamine; L-DOPA: 
L-dihydroxyphenylalanine; BMSCs: Bone Marrow MSCs; GFAP: 
Glial Fibrillary Acidic Protein; NICD: Notch1 Intracellular Domain; 
bFGF: Basic Fibroblast Growth Factor; CNTF: Ciliary Neurotrophic 
Factor; GDNF: Forskolin and Glial cell-line Derived Neurotrophic 
Factor; TH: Tyrosine Hydroxylase; DPSCs: Dental Pulp Stem 
Cells; DPCs: Dental Pulp Cells; SHEDs: Stem Cells from Human 
Exfoliated Deciduous Teeth; 6-OHDA: 6-hydroxydopamine; 
MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; BDNF: 
Brain-Derived Neurotrophic Factor; NGF: Nerve Growth Factor; 
IGF-1: Insulin-like Growth Factor-1; NT-3: Neurotrophin-3 

INTRODUCTION
Parkinson’s disease (PD) is one of the most prevalent 

neurodegenerative disorders. Its pathological characteristics 
include selective death of mesencephalic nigral dopamine (DA) 
neurons and the presence of intracytoplasmic inclusions (known 
as Lewy bodies) in the substantia nigra, which are consistently 

immunostained with an antibody against α-synuclein [1,2]. 
Although substitution of L-dihydroxyphenylalanine (L-DOPA or 
levodopa), a DA replacement therapy, is still considered the gold 
standard for patients with PD, this cannot delay the progression 
of loss of DA neurons in the substantia nigra. In addition, motor 
response oscillations and drug-induced abnormal involuntary 
movements develop in most patients with PD who receive 
L-DOPA therapy for more than 5 years [3-5]. On the other hand, 
an alternative approach for restoration of the damaged DA 
systems is transplantation of cells that synthesize DA. Allogeneic 
transplantation of the human fetal mesencephalon has provided 
proof-of-principle that cell therapy can work in patients with 
PD [6]. Replacement therapy, which uses the human fetal 
mesencephalon transplanted into the brain, showed some 
symptomatic relief [7,8]. However, this strategy using the human 
fetal mesencephalon involves ethical issues and problems in 
obtaining adequate numbers of DA neurons [1,9-11].

Stem cells have the capacity to proliferate and differentiate 
into multiple cellular lineages. There are different classifications 
of stem cells that reflect the range of possible cell types they 
can produce and the ways in which the stem cells are derived. 
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These stem cells include mesenchymal stem cells (MSCs), 
hematopoietic stem cells (HSCs), embryonic stem (ES) cells, 
progenitor cells, and induced pluripotent stem cells (iPS) [10-12]. 
To appreciate the potential applications of stem cell technology 
in neurodegenerative diseases, it is important to understand the 
characteristics of the various available stem cell types and the 
potential impact of cellular therapies on disease mechanisms. 
Each stem cell type possesses certain qualities and advantages, 
and the rationale for utilizing each type depends on the desired 
applications and outcomes. Briefly, ES cells are undifferentiated 
pluripotent cells derived from the inner cell mass of blastocyst-
stage embryos, which introduced a series of ethical problems in 
clinical application. To avoid such ethical problems are create 
histocompatibility, new technologies have enabled tissue cells 
to become iPS cells [13]. One characteristic of ES and iPS cells 
is their ability to form teratomas, which, in turn, is a major 
concern for future clinical application. MSCs are an alternative 
source of multipotent self-renewing cells. MSCs are derived 
from various adult and neonatal tissues, such as bone marrow, 
dental pulp, adipose tissue, amnion, placenta, umbilical cord and 
cord blood [14,15]. There are several evidences that MSCs can 
transdifferentiate into epithelial, endothelial, and neural cells 
[16-25]. Therefore, MSCs provide an accessible alternative to ES 
cells and potentially circumvent the need for immunosuppression 
in cellular therapies because they are derived from an autologous 
source. Unlike ES or iPS cells, MSCs have no ethical problems 
and have a low risk of forming teratoma, however, they are 
not completely free from malignancy potentials [13]. For cell 
transplantation therapy, MSCs have two major beneficial effects 
for PD: (1) differentiation to generate a broad spectrum of cells 
for the replacement of lost DA neurons and (2) a trophic effect 
that is mediated by the various types of trophic factors [26] 
(Figure 1). This review is focused on the potential of MSCs as a 
therapeutic cell source for PD.

Therapeutic potential of MSCs replacement therapies 
for PD

The Mesenchymal and Tissue Stem Cell Committee of the 

International Society for Cellular Therapy proposes minimal 
criteria to define human MSC [27]. First, MSC must be plastic-
adherent when maintained in standard culture conditions. 
Second, MSC must express CD105, CD73 and CD90, and lack 
expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 
and HLA-DR surface molecules. Third, MSC must differentiate 
to osteoblasts, adipocytes and chondroblasts in vitro. MSCs can 
be retrieved from various adult tissues such as and neonatal 
tissues, such as bone marrow, dental pulp, adipose tissue, 
amnion, placenta, umbilical cord, and cord blood [14,15]. MSCs 
isolated from different tissues are quite versatile and can adopt 
morphological and phenotypic properties of neuronal cells under 
various culture conditions. MSCs are characterized by being able 
to differentiate along several lineages [16-25]. The majority 
of the protocols for MSCs neuronal induction utilize different 
combinations of chemicals, growth factors and signal molecules 
[28-36]. MSCs differentiate into DA neurons can be achieved 
through different protocols based on chemical induction, gene 
transfection, co-culturing and use of conditioned medium [21,37-
44]. For instance, a system to specifically induce DA neurons 
from bone marrow MSCs (BMSCs) was reported [21], although 
undifferentiated BMSCs natively co-express several neuronal 
and glial markers, such as βIII-tubulin and glial fibrillary acidic 
protein (GFAP), respectively [45,46]. This system first generates 
postmitotic functional neuronal cells with a high efficiency 
without contamination by glial cells. The resulting neuronal 
cells are then further induced into DA neurons. The induction is 
achieved by lipofection method of plasmid vector containing a 
Notch1 intracellular domain (NICD) and G418 selection, followed 
by an administration of trophic factors such as basic fibroblast 
growth factor (bFGF), ciliary neurotrophic factor (CNTF), 
forskolin and glial cell-line derived neurotrophic factor (GDNF) 
[21,47]. The induced cells express the markers for DA neurons, 
such as tyrosine hydroxylase (TH), Nurr-1, Lmx1b, En1 and 
Pax3. In addition, the induced cells released DA into the culture 
media in response to high K+ depolarizing stimuli. These findings 
suggest that functional DA neurons can be efficiently induced 
from BMSCs [26]. 

Figure 1 MSCs have two major beneficial effects for PD.
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Recently, dental pulp stem cells (DPSCs) attract attention in 
the field of regenerative medicine. Dental pulp cells (DPCs) are 
obtained easily from adult teeth discard as medical waste and 
contain abundant DPSCs. Human adult DPSCs and stem cells from 
human exfoliated deciduous teeth (SHEDs) are self-renewing 
MSCs residing within the perivascular niche of the dental 
pulp [48,49]. They are thought to originate from the cranial 
neuronal crest, which expresses early markers for MSCs and 
neuroectodermal stem cells. Like BMSCs, DPSCs constitutively 
express neuronal and glial phenotypic markers even in an 
undifferentiated state. On exposure to embryonic midbrain cues 
(sonic hedgehog, bFGF and FGF8), DPSCs expressed mature 
neuronal markers and domapinergic neuronal markers, such as 
TH, En1, Nurr1, and Pix3, respectively [50]. In addition, induced 
DPSCs secreted DA constitutively and upon stimulation with 
potassium chloride and ATP [50]. Therefore, these findings 
indicate that MSCs, such as BMSCs and DPSCs, in the presence 
of embryonic midbrain cues show efficient propensity towards 
functional DA neurons in vitro condition.

In vivo condition, BMSCs have been proposed as potential 
cell sources for transplantation in PD since several studies in 
PD models have verified that BMSCs possess the capacity to 
protect and regenerate damaged DA neurons [16,51-60]. The 
PD models can be divided into those using environmental or 
synthetic neurotoxins and those using the in vivo expression of 
PD-related mutations discovered in human patients. In general, 
these neurotoxins, such as rotenone, 6-hydroxydopamine (6-
OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP), are used to create PD models using rodents and non-
human primates in the field of regenerative medicine. It has 
been reported that naïve murine BMSCs can differentiate into 
TH+ neurons and improve motor performance in MPTP-induced 
PD models [16]. In addition, BMSCs grafted into the striatum 
[51,54], intravenously [58], or intranasally [55] delivered BMSCs 
have a protective effect in 6-OHDA-induced PD models. Further, 
induced DA neurons from either rodent or human BMSCs were 
shown to exert neuroprotective effects against dopaminergic 
degeneration and to improve motor function in 6-OHDA-induced 
PD models [21]. Brain slice culture experiments demonstrated 
the production of DA in the grafted brains. Interestingly, no 
tumor formation was observed in the brain [21]. In general, 
unlike ES or iPS cells, BMSCs isolated from adult BM have a low 
risk forming tetatoma [13]. In addition, induced DA neurons 
from BMSCs that were differentiated using an optimized protocol 
had the potential to both regulate the risk of tumorigenesis and 
improve parkinsonian motor dysfunction [21]. Although no 
adverse effects have been reported, their long-term effect on 
tumorigenicity needs to be considered.

MSCs isolated from adipose tissue and umbilical cord have 
shown beneficial effects in PD models as well [61,62]. On the 
other hand, to date, DPSCs rescue dopaminergic neurons from 
6-OHDA-induced apoptosis in vitro [63]. In addition, Engrafted 
SHEDs-derived cells having dopaminergic properties survived in 
the striatum of PD models, improved the DA level more efficiently 
than engrafted undifferentiated SHEDs, and promoted the 
recovery from neurological deficits [64].

Functional recovery following MSCs transplantation has 

been shown in several PD models. However, the underlying 
mechanisms are largely unknown. In summary, it is unlikely 
that either transdifferentiation of MSCs or MSCs replacement 
instead of damaged DA neurons is a major factor contributing 
to MSCs-induced functional recovery [65,66]. As above, MSCs 
can differentiate into neural phenotypes in vitro [16,18,19,21]. 
Cell fusion has recently been found to occur when BMSC are 
transplanted into various types of organs, including the brain 
[67]. Rather, several studies suggest that neuroprotective and 
restorative effects of MSCs in PD models are achieved mainly 
through secretion of trophic factors and cytokines, as described 
in the next section [65,66]. 

Therapeutic potential of MSCs trophic support

Previous studies showed that MSCs released trophic factors 
[21,66-72]. Previous studies also showed that a significant 
increase in the 6-OHDA-lesioned striatum of the MSCs-
transplanted group compared with vehicle-treated control group 
[73,74]. A number of trophic factors have a protective effect on 
DA neurons in vitro and in vivo [69,75,76]. Briefly, GDNF, brain-
derived neurotrophic factor (BDNF), nerve growth factor (NGF), 
insulin-like growth factor-1 (IGF-1), neurotrophin-3 (NT-3), and 
bFGF have been reported to act on DA neurons in vitro and in vivo, 
making them potential therapeutic catalysts for PD. For instance, 
in animal models of PD, intraventricular injection of GDNF induces 
a long-term increase in the striatal DA content [77], although 
clinical trials using intraventricular injections of GDNF did not 
improve functional deficits in patients with PD and nigrostriatal 
function was not augmented [78]. Thus, intraventricular GDNF 
in humans appears to be the wrong method [79]. Therefore, Cell 
transplantation therapy is an alternative technique for providing 
trophic factors to DA neurons of the nigrostriatal pathway [80]. 

In addition, trophic factors, such as BDNF, GDNF, NGF, NT-3 
and CNTF stimulate DA neuronal regeneration [81-85]. Therefore, 
it is presumable that trophic factors secreted from grafted MSCs 
and stimulated host cells are implicated in the therapeutic 
effects of MSCs in PD models [65]. However, the concept of cell 
differentiation and neurogenesis in the midbrain region still 
remains a controversial topic because conflicting findings have 
been obtained in previous studies [86-90]. Briefly, Zhao et al. 
suggest that DA neurons, the cell type lost in Parkinson’s disease, 
are continuously generated in the adult substantia nigra pars 
compacta [91]. Using similar methodological procedures to label 
dividing cells, Frielingsdorf et al. showed that no evidence of new 
DA neurons in the substantia nigra, either in normal or 6-OHDA-
lesioned hemi-Parkinsonian rodents, or even after growth factor 
treatment [88]. Therefore, we assume that transplantation of 
MSCs promote endogenous brain repair mechanisms, although 
there was no obvious evidence that progenitor cells in the 
substantia nigra can differentiate into DA neurons in the in vivo 
condition at present. Further studies are also needed to resolve 
the detailed mechanism of endogenous brain repair by stem cell 
transplantation.

Other protective effects of MSCs

The pathological characteristics of PD include selective death 
of mesencephalic nigral DA neurons and the presence of Lewy 
bodies in the substantia nigra [1,2]. We have reported that chronic 
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oral administration of rotenone caused specific nigrostriatal DA 
neurodegeneration in C57BL/6 mice [92,93]. Chronic exposure 
of rotenone produced some TH+ neurons, which induced a 
high level of cytoplasmic α-synuclein immunoreactivity in the 
substantia nigra [92,93]. Genetic studies led to the discovery of 
a small percentage of familial PD cases linked directly to genetic 
mutations, as well as gene duplications and triplications. The 
first gene associated with PD was α-synuclein (PARK1) [94]. 
Furthermore, duplication and triplications of α-synuclein are 
linked to an early onset familial PD (PARK4) [95]. These genetic 
studies suggest that excess increase of α-synuclein protein 
levels may represent a gain of toxic function. In our previous 
study, α-synuclein+/TH+ cells in the substantia nigra decreased 
on MSCs injection into the tail vein [66] (Figure 2). Although 
the exact mechanism remain unclear, neuroprotective effects of 
stem cells could involve a reduction in intracellular α-synuclein. 
The results suggest that MSCs transplantation may be a useful 
therapy for patients with PD as well as for those with other 
α-synucleinopathies such as multiple system atrophy and 
dementia with Lewy bodies. 

Neuroinflammation has been described as an important 
participant in several neurodegenerative diseases including PD, 
Alzheimer’s disease (AD), amyotrophic lateral sclerosis, and 
multiple system atrophy (MSA) [96,97]. McGeer et al. reported the 
presence of activated microglia and inflammatory macrophages 
as well as proinflammatory cytokines in SN postmorten samples 
from PD patients [98]. Activated microglia are also present in 
patients with early PD and they are correlated with the degree 
of DA neuronal loss [99]. Evidence supporting the inflammatory 
hypothesis of neurodegeneration comes from studies showing 
the expression of a bunch of inflammatory markers within the 
brain including specific proteins, pro-inflammatory cytokines 

and markers of active glial cells [100]. Degenerative DA neurons 
caused by LPS or MPTP can be prevented by treatment of 
anti-inflammatry drugs sush as aspirin, dexamethasone, and 
the selective COX-2 inhibitor rofecoxib [65]. Several lines of 
evidence also indicated that anti-inflammatory responses by 
other clinical medicines such as simvastation, minocyclin, and 
memantine induced to reduce the inflammatory process and 
neuronal death by LPS [100-102]. Therefore, the involvement 
of inflammation and oxidative stress in PD pathophysiology 
suggests that anti-inflammatory and anti-oxidative stress 
effects of MSCs partially underlie their benefical effects. MSCs 
migrate to sites of inflammation and injured tissue. At these 
locations, MSCs repair the damaged region under conditions of 
inflammation and oxidative stress, by paracrine mechanisms 
where they stimulate endogenous stem cells and/or modulate 
the functions of immune cells, such as monocytes, macrophages, 
dendritic cells (DCs), and T and B cells as well as natural killer 
cells (NK). Although the exact mechanism of MSCs-mediated 
immunoregulation is not understood, the anti-inflammatory role 
of MSCs has been demonstrated in vitro and in vivo PD models 
[103]. Along with differentiational potency and trophic effects, 
the anti-inflammatory properties of MSCs could have therapeutic 
implications in the treatment of PD.

Clinical perspective 

Although tremendous advancements have been made from 
preclinical (animal) studies using MSCs, substantial challenges 
are still to be overcome before MSC therapy can fulfill its promise 
in clinical applications for PD [104]. During clinical application of 
MSCs, the culture conditions must be tested and quality controls 
must be adapted. Although it is likely that multiple sources of 
MSCs will be used clinically in the future, the release criteria 
of the cell batch must be strict and must take into account the 
effectiveness of cellular product and the safety of the patient. 
Clinical application of MSCs requires a large number of cells for 
transplantation in accordance with Good Manufacturing Practice 
(GMP). To maximize the success of cellular replacement therapies 
for PD, there also are critical issues that involve biological, 
technical and surgical challenges such as: (1) anatomical 
location for cell administration; (2) Patient identification likely 
to respond to cellular replacement therapy; (3) Parameters for 
cell preparation and delivery to obtain optimal graft survival, 
including the optimal volume, dosage and format of cells; (4) 
Mechanisms for limiting host immunological responses to donor 
cells; (5) The optimimization of graft function, prevention of graft 
effects. Additional basic and preclinical research will provide a 
fuller understanding as to how to best apply MSCs to improve the 
symptom of PD. Such studies will greatly inform key points such 
as above-mentioned issues. 

CONCLUSION 
MSCs have several disadvantages relative to ES cells and 

iPS cells, such as insufficient numbers of stem cells, reduced 
proliferation and differentiation capacity with age in vitro and 
after stem cell transplantation in vivo [105,106]. However, 
MSCs can be obtained from patients with PD (for autologous 
transplantation) as well as from healthy donors (for allogeneic 
transplantation). MSCs are not burdened with the ethical issues 
associated with ES cells. Due to the focused loss of DA neurons, 

Figure 2 Intracellular expression of α-syn in TH+ neurons in the SNpc. 
Midbrain slices were immunostained with antibodies against α-syn 
and TH and the analyzed by laser scanning confocal microscopy. 
White arrowheads indicate α-syn+ and TH+ neurons. Semiquantitative 
analysis of α-syn+ / TH+ neurons in the SNpc. Each value is expressed 
as the mean SEM based on the number of TH+ neurons (n = 4-6 in each 
group). 
** P < 0.01 vs. control mice; †† P < 0.01 vs. rotenone-treated mice. 
α-syn, α-synuclein; TH, tyrosine hydroxylase. 
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PD is particularly suitable for cell transplantation therapy. 
MSCs can be retrieved from various adult tissues. Functional DA 
neurons can be efficiently induced from MSCs. Several studies, 
including our studies, have shown that MSCs can protect and/
or stimulate regeneration in host-damaged DA neurons mainly 
through secretion of trophic factors and cytokines from MSCs. 
These results demonstrate the potential of MSCs derived from 
an autologous source for clinical applications for PD, although 
further studies are required.
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